Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 530
1.
Sci Adv ; 9(47): eadf2772, 2023 11 24.
Article En | MEDLINE | ID: mdl-38000033

Biallelic genetic variants in N-acetylneuraminic acid synthase (NANS), a critical enzyme in endogenous sialic acid biosynthesis, are clinically associated with neurodevelopmental disorders. However, the mechanism underlying the neuropathological consequences has remained elusive. Here, we found that NANS mutation resulted in the absence of both sialic acid and protein polysialylation in the cortical organoids and notably reduced the proliferation and expansion of neural progenitors. NANS mutation dysregulated neural migration and differentiation, disturbed synapse formation, and weakened neuronal activity. Single-cell RNA sequencing revealed that NANS loss of function markedly altered transcriptional programs involved in neuronal differentiation and ribosomal biogenesis in various neuronal cell types. Similarly, Nans heterozygous mice exhibited impaired cortical neurogenesis and neurobehavioral deficits. Collectively, our findings reveal a crucial role of NANS-mediated endogenous sialic acid biosynthesis in regulating multiple features of human cortical development, thus linking NANS mutation with its clinically relevant neurodevelopmental disorders.


N-Acetylneuraminic Acid , Oxo-Acid-Lyases , Humans , Mice , Animals , N-Acetylneuraminic Acid/metabolism , Oxo-Acid-Lyases/genetics , Organoids/metabolism , Mutation , Neurogenesis/genetics
2.
World J Urol ; 41(8): 2141-2148, 2023 Aug.
Article En | MEDLINE | ID: mdl-37318624

PURPOSE: The aim of our study is to describe the genetic features and correlation between the genotype and phenotype of Chinese patients with primary hyperoxaluria type 3 (PH3). METHODS: The genetic and clinical data of PH3 patients in our cohort were collected and analyzed retrospectively. All published studies of Chinese PH3 populations between January 2010 and November 2022 were searched and enrolled based on inclusive standards. RESULTS: A total of 60 Chinese PH3 patients (21 cases from our cohort and 39 cases from previous studies) were included. The mean age of onset was 1.62 ± 1.35 (range 0.4-7) years. A total of 29 different variants in the HOGA1 gene were found. The mutations were most commonly clustered in exons 1, 6, and 7. Among the genotypes, exon 6 skipping (c.834G > A and c.834_834 + 1GG > TT mutations) was the most common, followed by c.769 T > G; the allele frequencies (AFs) were 48.76% and 12.40%, respectively. Patients homozygous for exon 6 skipping exhibited a median age of onset of 0.67 (0.58-1) years, which was significantly lower than that observed among heterozygotes and nonexon 6 skipping patients (p = 0.021). A total of 22.5% (9/40) of PH3 patients had a decreased estimated glomerular filtration rate, and one patient with homozygous exon 6 skipping developed end-stage renal disease. CONCLUSIONS: A hotspot mutation, potential hotspot mutation and genotype-phenotype correlation were found in Chinese PH3 patients. This study expands the mutational spectrum and contributes to the understanding of genotypic profiles of PH3, which may provide a potential diagnostic and therapeutic target.


Hyperoxaluria, Primary , Oxo-Acid-Lyases , Humans , East Asian People , Genotype , Hyperoxaluria, Primary/genetics , Mutation , Phenotype , Retrospective Studies , Oxo-Acid-Lyases/genetics
3.
Clin Nephrol ; 99(5): 260-264, 2023 May.
Article En | MEDLINE | ID: mdl-36928260

In an era of increased accessibility to genetic testing, nephrologists may be able to better understand pathophysiologic mechanisms by which their patients develop specific conditions. In this study, we describe clinical and genetic findings of two patients with kidney cysts, who were found to have variants in HOGA1, a mitochondrial 4-hydroxy-2-oxoglutarate aldolase enzyme associated with primary hyperoxaluria type 3 and the development of oxalate-containing kidney stones. We describe possible mechanisms by which mutations in this enzyme could result in the kidney cyst formation seen in our two patients. We propose that patients with mutations in HOGA1 are predisposed to crystal or stone deposition, tubule dilation, and inflammasome activation, which can result in kidney cyst formation.


Cysts , Hyperoxaluria, Primary , Kidney Calculi , Oxo-Acid-Lyases , Humans , Hyperoxaluria, Primary/genetics , Kidney , Oxo-Acid-Lyases/chemistry , Oxo-Acid-Lyases/genetics
4.
Hepatol Int ; 17(2): 377-392, 2023 Apr.
Article En | MEDLINE | ID: mdl-36508088

BACKGROUND: Metabolic disorder is an essential characteristic of tumor development. Ketogenesis is a heterogeneous factor in multiple cancers, but the effect of ketogenesis on hepatocellular carcinoma (HCC) is elusive. METHODS: We aimed to explain the role of ketogenesis-related hydroxy-methyl-glutaryl-CoA lyase (HMGCL) on HCC suppression. Expression pattern of HMGCL in HCC specimens was evaluated by immunohistochemistry (IHC). HMGCL was depleted or overexpressed in HCC cells to investigate the functions of HMGCL in vitro and in vivo. The anti-tumor function of HMGCL was studied in subcutaneous xenograft and Trp53Δhep/Δhep; c-Myc-driven HCC mouse models. The mechanism of HMGCL-mediated tumor suppression was studied by IHC, western blot (WB) and Cut & Tag. RESULTS: HMGCL depletion promoted HCC proliferation and metastasis, whereas its overexpression reversed this trend. As HMGCL catalyzes ß-hydroxy-butyric acid (ß-OHB) production, we discovered that HMGCL increased acetylation at histone H3K9, which further promoted the transcription of dipeptidyl peptidase 4 (DPP4), a key protein maintains intracellular lipid peroxidation and iron accumulation, leading to HCC cells vulnerability to erastin- and sorafenib-induced ferroptosis. CONCLUSION: Our study identified a critical role of HMGCL on HCC suppression, of which HMGCL regulated H3K9 acetylation through ß-OHB and modulating the expression of DPP4 in a dose-dependent manner, which led to ferroptosis in HCC cells.


Carcinoma, Hepatocellular , Dipeptidyl Peptidase 4 , Ferroptosis , Liver Neoplasms , Oxo-Acid-Lyases , Animals , Humans , Mice , 3-Hydroxybutyric Acid/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , Ferroptosis/genetics , Ferroptosis/physiology , Histones/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Lyases/genetics , Lyases/metabolism , Oxo-Acid-Lyases/genetics , Oxo-Acid-Lyases/metabolism
5.
Hum Mutat ; 43(12): 1757-1779, 2022 12.
Article En | MEDLINE | ID: mdl-36259736

Primary hyperoxalurias (PH) are a group of rare heterogeneous disorders characterized by deficiencies in glyoxylate metabolism. To date, three genes have been identified to cause three types of PH (I, II, and III). The HOGA1 gene caused type III in around 10% of the PH cases. Disease-associated pathogenic variants have been reported from several populations and a comprehensive spectrum of these mutations and genotype-phenotype correlation has never been presented. In this study, we describe new cases of the HOGA1 gene pathogenic variants identified in our population. We report the first case of ESKD with successful kidney transplantation with 5 years of follow-up. Furthermore, a comprehensive overview of PH type III associated HOGA1 gene variants was carried out. Compiling the data from the literature, we reviewed 57 distinct HOGA1 gene pathogenic variants in 175 patients worldwide. The majority of reported variants are missense variants that predicted a loss of function mechanism as the underlying pathology. There has been evidence of the presence of founder mutations in several populations like Europeans, Ashkenazi Jews, Arab, and Chinese populations. No significant genotype-phenotype correlation was identified concerning the ages of onset of the disease and biochemical and metabolic parameters. Nephrocalcinosis was rare in patients with disease-associated variants. Most of the patients were presented with urolithiasis early in life; only five cases reported disease progression after the second decade of life. The establishment of impairment of renal function in 8% of all the reported cases makes this type a relatively severe form of primary hyperoxaluria, not a benign etiology as suggested previously.


Hyperoxaluria, Primary , Oxo-Acid-Lyases , Humans , Hyperoxaluria, Primary/diagnosis , Hyperoxaluria, Primary/genetics , Hyperoxaluria, Primary/metabolism , Mutation , Oxo-Acid-Lyases/genetics , Oxo-Acid-Lyases/metabolism
6.
Carbohydr Res ; 516: 108561, 2022 Jun.
Article En | MEDLINE | ID: mdl-35487178

N-acetylneuraminic acid (sialic acid) is an abundantly found carbohydrate moiety covering the surface of all vertebrate cells and secreted glycoproteins. The human N-acetylneuraminate pyruvate lyase (NPL) interconverts sialic acid to N-acetylmannosamine and pyruvate, and mutations of the NPL gene were found to cause sialuria and impair the functionality of muscles. Here we report the soluble and functional expression of human NPL in Escherichia coli, which allowed us to study the biochemical properties of two clinically relevant NLP mutations (Asn45Asp and Arg63Cys). The Asn45Asp mutant variant was enzymatically active, but had lower expression levels and showed reduced stability when compared to the wild-type NPL variant. Expression trials of the Arg63Cys mutant did not yield any recombinant protein and consequently, no enzymatic activity was detected. The locations of these clinically relevant amino acid substitutions are also discussed by using a human NPL homology model.


Lyases , Oxo-Acid-Lyases , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , N-Acetylneuraminic Acid/chemistry , Oxo-Acid-Lyases/chemistry , Oxo-Acid-Lyases/genetics , Oxo-Acid-Lyases/metabolism , Pyruvates
7.
Gene ; 815: 146155, 2022 Mar 20.
Article En | MEDLINE | ID: mdl-34995728

PURPOSE: Next generation sequencing-based exome sequencing can be used to identify genetic abnormalities in patients believed to be suffering from primary hyperoxaluria. We outline our efforts to improve the diagnostic capacity of exome sequencing for these patients. METHODS: We conducted a retrospective analysis of exome sequencing data from 77 pediatric urolithiasis patients with hyperoxaluria of unknown origin. Canonical exome sequencing analysis was performed to identify pathogenic variants in three known primary hyperoxaluria-related genes (AGXT, GRHPR, HOGA1) as per the guidelines of the American College of Medical Genetics. Then, extended exome sequencing analyses of 5'-untranslated region, non-canonical splicing site and copy number variant were performed on patients with negative diagnostic results in these three genes. RESULTS: Canonical exome sequencing analyses led to the diagnosis of primary hyperoxaluria in 20/77 (26%) patients, including eight, four, and eight patients diagnosed with type 1, 2 and 3 primary hyperoxaluria, respectively. Non-canonical splicing site analyses discovered a pathogenic variant in the HOGA1 gene, which led to the diagnosis of six additional patients with type 3 primary hyperoxaluria, while copy number variant analyses from exome sequencing data identified a 1.8 kb copy number loss that impacted the AGXT gene, resulting in the diagnosis of an additional type 1 primary hyperoxaluria case. CONCLUSIONS: Extended non-canonical splicing site and copy number variant analyses improve the diagnostic yield of canonical exome sequencing analysis for primary hyperoxaluria from 26% (20/77) to 35% (27/77) in 77 pediatric urolithiasis patients with hyperoxaluria.


Hyperoxaluria, Primary/genetics , Oxo-Acid-Lyases/genetics , Transaminases/genetics , Urolithiasis/genetics , 5' Untranslated Regions , Alcohol Oxidoreductases/genetics , Child , Child, Preschool , DNA Copy Number Variations , Female , Humans , Infant , Male , Retrospective Studies , Exome Sequencing
8.
Biosci Rep ; 41(10)2021 10 29.
Article En | MEDLINE | ID: mdl-34545928

Glucosinolates, synthesized by the glucosinolate biosynthesis pathway, are the secondary metabolites used as a defence mechanism in the Brassicaceae plants, including Arabidopsis thaliana. The first committed step in the pathway, catalysed by methylthioalkylmalate (MAM) synthase (EC: 2.3.3.17), is to produce different variants of glucosinolates. Phylogenetic analyses suggest that possibly MAM synthases have been evolved from isopropylmalate synthase (IPMS) by the substitutions of five amino acid residues (L143I, H167L, S216G, N250G and P252G) in the active site of IPMS due to point mutations. Considering the importance of MAM synthase in Brassicaceae plants, Petersen et al. (2019) made an effort to characterise the MAM synthase (15 MAM1 variants) in vitro by single substitution or double substitutions. In their study, the authors have expressed the variants in Escherichia coli and analysed the amino acids in the cultures of E. coli in vivo. Since modifying the MAM synthases by transgenic approaches could increase the resistance of Brassicaceae plants for enhancing the defence effect of glucosinolates and their degraded products; hence, MAM synthases should be characterized in detail in vivo in A. thaliana along with the structural analysis of the enzyme for meaningful impact and for its imminent use in vivo.


Glucosinolates , Oxo-Acid-Lyases , Escherichia coli/metabolism , Gene Expression Regulation, Plant , Oxo-Acid-Lyases/genetics , Phylogeny
9.
Appl Environ Microbiol ; 87(15): e0060021, 2021 07 13.
Article En | MEDLINE | ID: mdl-33990312

Homocitrate synthase (HCS) catalyzes the aldol condensation of 2-oxoglutarate (2-OG) and acetyl coenzyme A (AcCoA) to form homocitrate, which is the first enzyme of the lysine biosynthetic pathway in the yeast Saccharomyces cerevisiae. The HCS activity is tightly regulated via feedback inhibition by the end product lysine. Here, we designed a feedback inhibition-insensitive HCS of S. cerevisiae (ScLys20) for high-level production of lysine in yeast cells. In silico docking of the substrate 2-OG and the inhibitor lysine to ScLys20 predicted that the substitution of serine with glutamate at position 385 would be more suitable for desensitization of the lysine feedback inhibition than the substitution from serine to phenylalanine in the already known Ser385Phe variant. Enzymatic analysis revealed that the Ser385Glu variant is far more insensitive to feedback inhibition than the Ser385Phe variant. We also found that the lysine contents in yeast cells expressing the Ser385Glu variant were 4.62- and 1.47-fold higher than those of cells expressing the wild-type HCS and Ser385Phe variant, respectively, due to the extreme desensitization to feedback inhibition. In this study, we obtained highly feedback inhibition-insensitive HCS using in silico docking and enzymatic analysis. Our results indicate that the rational engineering of HCS for feedback inhibition desensitization by lysine could be useful for constructing new yeast strains with higher lysine productivity. IMPORTANCE A traditional method for screening toxic analogue-resistant mutants has been established for the breeding of microbes that produce high levels of amino acids, including lysine. However, another efficient strategy is required to further improve their productivity. Homocitrate synthase (HCS) catalyzes the first step of lysine biosynthesis in the yeast Saccharomyces cerevisiae, and its activity is subject to feedback inhibition by lysine. Here, in silico design of a key enzyme that regulates the biosynthesis of lysine was utilized to increase the productivity of lysine. We designed HCS for the high-level production of lysine in yeast cells by in silico docking simulation. The engineered HCS exhibited much less sensitivity to lysine and conferred higher production of lysine than the already known variant obtained by traditional breeding. The combination of in silico design and experimental analysis of a key enzyme will contribute to advances in metabolic engineering for the construction of industrial microorganisms.


Fungal Proteins/metabolism , Lysine/metabolism , Oxo-Acid-Lyases/metabolism , Saccharomyces cerevisiae/metabolism , Amino Acid Substitution , Feedback, Physiological , Fungal Proteins/chemistry , Fungal Proteins/genetics , Metabolic Engineering , Molecular Docking Simulation , Oxo-Acid-Lyases/chemistry , Oxo-Acid-Lyases/genetics , Saccharomyces cerevisiae/genetics
10.
Mol Biol Rep ; 48(4): 3841-3844, 2021 Apr.
Article En | MEDLINE | ID: mdl-33948853

Primary hyperoxaluria type-III is a disorder of glyoxylate metabolism, caused by pathogenic variants in the HOGA1 gene. To date more than 50 disease-associated pathogenic sequence variants are identified in the gene. A few of the variants are population specific and are considered to have a founder effect in respective populations. The most prevalent variant, c.700+5G>T, identified frequently in Caucasian (allele frequency 0.63) and European (0.35) populations. Two variants, c.860G>T (p.Gly287Val) and c.944_946delAGG (p.Glu315del), account for 95% of the allele count in patients of Ashkenazi Jews ancestry. A possible mutational hot-spot at c.834 position is frequently found mutated in Chinese patients. This observed ethnic associations of HOGA1 alleles span a spectrum ranging from recurrence limited to an ethnic group to a possible founder-effect.


Hyperoxaluria, Primary/genetics , Oxo-Acid-Lyases/genetics , Polymorphism, Genetic , Ethnicity/genetics , Founder Effect , Gene Frequency , Humans , Hyperoxaluria, Primary/ethnology
11.
Microb Genom ; 7(4)2021 04.
Article En | MEDLINE | ID: mdl-33848237

Nonulosonic acids (NulOs) are a group of nine-carbon monosaccharides with different functions in nature. N-acetylneuraminic acid (Neu5Ac) is the most common NulO. It covers the membrane surface of all human cells and is a central molecule in the process of self-recognition via SIGLECS receptors. Some pathogenic bacteria escape the immune system by copying the sialylation of the host cell membrane. Neu5Ac production in these bacteria is catalysed by the enzyme NeuB. Some bacteria can also produce other NulOs named pseudaminic and legionaminic acids, through the NeuB homologues PseI and LegI, respectively. In Opisthokonta eukaryotes, the biosynthesis of Neu5Ac is catalysed by the enzyme NanS. In this study, we used publicly available data of sequences of NulOs synthases to investigate its distribution within the three domains of life and its relationship with pathogenic bacteria. We mined the KEGG database and found 425 NeuB sequences. Most NeuB sequences (58.74 %) from the KEGG orthology database were classified as from environmental bacteria; however, sequences from pathogenic bacteria showed higher conservation and prevalence of a specific domain named SAF. Using the HMM profile we identified 13 941 NulO synthase sequences in UniProt. Phylogenetic analysis of these sequences showed that the synthases were divided into three main groups that can be related to the lifestyle of these bacteria: (I) predominantly environmental, (II) intermediate and (III) predominantly pathogenic. NeuB was widely distributed in the groups. However, LegI and PseI were more concentrated in groups II and III, respectively. We also found that PseI appeared later in the evolutionary process, derived from NeuB. We use this same methodology to retrieve sialic acid synthase sequences from Archaea and Eukarya. A large-scale phylogenetic analysis showed that while the Archaea sequences are spread across the tree, the eukaryotic NanS sequences were grouped in a specific branch in group II. None of the bacterial NanS sequences grouped with the eukaryotic branch. The analysis of conserved residues showed that the synthases of Archaea and Eukarya present a mutation in one of the three catalytic residues, an E134D change, related to a Neisseria meningitidis reference sequence. We also found that the conservation profile is higher between NeuB of pathogenic bacteria and NanS of eukaryotes than between NeuB of environmental bacteria and NanS of eukaryotes. Our large-scale analysis brings new perspectives on the evolution of NulOs synthases, suggesting their presence in the last common universal ancestor.


Bacteria/enzymology , Bacterial Proteins/genetics , Evolution, Molecular , Oxo-Acid-Lyases/genetics , Phylogeny , Amino Acid Sequence , Bacteria/classification , Bacteria/genetics , Bacteria/pathogenicity , Bacterial Infections/microbiology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Databases, Genetic , Humans , N-Acetylneuraminic Acid/metabolism , Oxo-Acid-Lyases/chemistry , Oxo-Acid-Lyases/metabolism , Sequence Alignment , Virulence
12.
Infect Immun ; 89(5)2021 04 16.
Article En | MEDLINE | ID: mdl-33619030

Listeria monocytogenes is a Gram-positive, intracellular pathogen that is highly adapted to invade and replicate in the cytosol of eukaryotic cells. Intermediate metabolites in the menaquinone biosynthesis pathway are essential for the cytosolic survival and virulence of L. monocytogenes, independent of the production of menaquinone (MK) and aerobic respiration. Determining which specific intermediate metabolite(s) are essential for cytosolic survival and virulence has been hindered by the lack of an identified 1,4-dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) thioesterase essential for converting DHNA-CoA to DHNA in the MK synthesis pathway. Using the recently identified Escherichia coli DHNA-CoA thioesterase as a query, homology sequence analysis revealed a single homolog in L. monocytogenes, LMRG_02730 Genetic deletion of LMRG_02730 resulted in an ablated membrane potential, indicative of a nonfunctional electron transport chain (ETC) and an inability to aerobically respire. Biochemical kinetic analysis of LMRG_02730 revealed strong activity toward DHNA-CoA, similar to its E. coli homolog, further demonstrating that LMRG_02730 is a DHNA-CoA thioesterase. Functional analyses in vitro, ex vivo, and in vivo using mutants directly downstream and upstream of LMRG_02730 revealed that DHNA-CoA is sufficient to facilitate in vitro growth in minimal medium, intracellular replication, and plaque formation in fibroblasts. In contrast, protection against bacteriolysis in the cytosol of macrophages and tissue-specific virulence in vivo requires the production of 1,4-dihydroxy-2-naphthoate (DHNA). Taken together, these data implicate LMRG_02730 (renamed MenI) as a DHNA-CoA thioesterase and suggest that while DHNA, or an unknown downstream product of DHNA, protects the bacteria from killing in the macrophage cytosol, DHNA-CoA is necessary for intracellular bacterial replication.


Listeria monocytogenes/physiology , Listeriosis/microbiology , Thiolester Hydrolases/metabolism , Vitamin K 2/metabolism , Biosynthetic Pathways , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Macrophages/immunology , Macrophages/metabolism , Microbial Viability , Oxo-Acid-Lyases/genetics , Oxo-Acid-Lyases/metabolism , Sequence Deletion , Thiolester Hydrolases/genetics , Virulence
13.
FEBS J ; 288(6): 1975-1988, 2021 03.
Article En | MEDLINE | ID: mdl-32897601

Homocitrate synthase (HCS) catalyzes the aldol condensation of α-ketoglutarate and acetyl coenzyme A to form homocitrate, which is the first committed step of lysine biosynthesis through the α-aminoadipate pathway in yeast, fungi, and some prokaryotes. We determined the crystal structure of a truncated form of HCS from a hyperthermophilic acidophilic archaeon, Sulfolobus acidocaldarius, which lacks the RAM (Regulation of amino acid metabolism) domain at the C terminus serving as the regulatory domain for the feedback inhibition by lysine, in complex with α-ketoglutarate, Mg2+ , and CoA. This structure coupled with mutational analysis revealed that a subdomain, subdomain II, connecting the N-terminal catalytic domain and C-terminal RAM domain is involved in the recognition of acetyl-CoA. This is the first structural evidence of the function of subdomain II in the related enzyme family, which will lead to a better understanding of the catalytic mechanism of HCS. DATABASES: Structural data are available in the RCSB PDB database under the accession number 6KTQ.


Acetyl Coenzyme A/metabolism , Archaeal Proteins/metabolism , Ketoglutaric Acids/metabolism , Oxo-Acid-Lyases/metabolism , Sulfolobus acidocaldarius/enzymology , Acetyl Coenzyme A/chemistry , Amino Acid Sequence , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Binding Sites/genetics , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Ketoglutaric Acids/chemistry , Kinetics , Magnesium/metabolism , Models, Molecular , Mutation , Oxo-Acid-Lyases/chemistry , Oxo-Acid-Lyases/genetics , Protein Domains , Sequence Homology, Amino Acid , Substrate Specificity , Sulfolobus acidocaldarius/genetics , Tricarboxylic Acids/chemistry , Tricarboxylic Acids/metabolism
14.
J Urol ; 205(5): 1394-1399, 2021 May.
Article En | MEDLINE | ID: mdl-33350326

PURPOSE: The etiology of calcium-oxalate kidney stone formation remains elusive. Biallelic mutations in HOGA1 are responsible for primary hyperoxaluria type 3 and result in oxalate overproduction and kidney stone disease. Our previous study showed that carriers of HOGA1 mutations have elevated urinary levels of oxalate precursors. In this study we explored the possibility that mutations in HOGA1 confer a dominant phenotype in the form of kidney stone disease or hyperoxaluria. MATERIALS AND METHODS: An observational analytic case control study was designed to determine the prevalence of pathogenic HOGA1 mutations among adults with calcium-oxalate kidney stone disease. Given the high prevalence of HOGA1 mutations among Ashkenazi Jews, this group was evaluated separately. Carrier frequency of any of the 52 reported pathogenic mutations was compared to data derived from gnomAD for the corresponding ethnic group. Sanger sequencing of HOGA1 gene was performed on DNA samples from the following groups: 60 Ashkenazi Jews and 86 nonAshkenazi calcium-oxalate stone formers, 150 subjects with low and 150 with high urinary oxalate levels. RESULTS: The carrier prevalence of pathogenic mutations among the Ashkenazi Jews was 1.7% compared to 2.8% in the corresponding control group (p=0.9 OR=0.6 95% CI 0.01-3.51). We did not detect any mutation among the nonAshkenazi study group. No correlation was detected between hyperoxaluria and HOGA1 variants. CONCLUSIONS: This study shows that mutations in HOGA1 do not confer a dominant phenotype in the form of calcium-oxalate kidney stone disease or hyperoxaluria.


Calcium Oxalate , Hyperoxaluria/genetics , Kidney Calculi/genetics , Mutation , Oxo-Acid-Lyases/genetics , Phenotype , Adult , Aged , Calcium Oxalate/analysis , Case-Control Studies , Cohort Studies , Female , Humans , Kidney Calculi/chemistry , Male , Middle Aged
15.
Microb Cell Fact ; 19(1): 218, 2020 Nov 26.
Article En | MEDLINE | ID: mdl-33243241

BACKGROUND: The natural phenolic glycoside gastrodin is the major bioactive ingredient in the well-known Chinese herb Tianma and is widely used as a neuroprotective medicine in the clinic. Microbial production from sustainable resources is a promising method to replace plant extraction and chemical synthesis which were currently used in industrial gastrodin production. Saccharomyces cerevisiae is considered as an attractive host to produce natural plant products used in the food and pharmaceutical fields. In this work, we intended to explore the potential of S. cerevisiae as the host for high-level production of gastrodin from glucose. RESULTS: Here, we first identified the plant-derived glucosyltransferase AsUGT to convert 4-hydroxybenzyl alcohol to gastrodin with high catalytic efficiency in yeast. Then, we engineered de novo production of gastrodin by overexpressing codon-optimized AsUGTsyn, the carboxylic acid reductase gene CARsyn from Nocardia species, the phosphopantetheinyl transferase gene PPTcg-1syn from Corynebacterium glutamicum, the chorismate pyruvate-lyase gene UbiCsyn from Escherichia coli, and the mutant ARO4K229L. Finally, we achieved an improved product titer by a chromosomal multiple-copy integration strategy and enhancement of metabolic flux toward the aglycon 4-hydroxybenzyl alcohol. The best optimized strain produced 2.1 g/L gastrodin in mineral medium with glucose as the sole carbon source by flask fermentation, which was 175 times higher than that of the original gastrodin-producing strain. CONCLUSIONS: The de novo high-level production of gastrodin was first achieved. Instead of chemical synthesis or plants extraction, our work provides an alternative strategy for the industrial production of gastrodin by microbial fermentation from a sustainable resource.


Glucose/metabolism , Glucosides/biosynthesis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , 3-Deoxy-7-Phosphoheptulonate Synthase/genetics , Bacterial Proteins/genetics , Benzyl Alcohols , Biosynthetic Pathways , Genetic Engineering , Glucosyltransferases/genetics , Industrial Microbiology , Metabolic Engineering , Oxidoreductases/genetics , Oxo-Acid-Lyases/genetics , Plant Proteins/genetics , Transferases (Other Substituted Phosphate Groups)/genetics
16.
Orphanet J Rare Dis ; 15(1): 48, 2020 02 14.
Article En | MEDLINE | ID: mdl-32059735

BACKGROUND: 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMGCLD) is an autosomal recessive disorder of ketogenesis and leucine degradation due to mutations in HMGCL. METHOD: We performed a systematic literature search to identify all published cases. Two hundred eleven patients of whom relevant clinical data were available were included in this analysis. Clinical course, biochemical findings and mutation data are highlighted and discussed. An overview on all published HMGCL variants is provided. RESULTS: More than 95% of patients presented with acute metabolic decompensation. Most patients manifested within the first year of life, 42.4% already neonatally. Very few individuals remained asymptomatic. The neurologic long-term outcome was favorable with 62.6% of patients showing normal development. CONCLUSION: This comprehensive data analysis provides a systematic overview on all published cases with HMGCLD including a list of all known HMGCL mutations.


Amino Acid Metabolism, Inborn Errors , Oxo-Acid-Lyases , Acetyl-CoA C-Acetyltransferase/deficiency , Amino Acid Metabolism, Inborn Errors/genetics , Humans , Mutation/genetics , Oxo-Acid-Lyases/genetics
17.
Cells ; 9(1)2020 01 14.
Article En | MEDLINE | ID: mdl-31947614

The Drosophila melanogasterDmATPCL gene encodes for the human ATP Citrate Lyase (ACL) ortholog, a metabolic enzyme that from citrate generates glucose-derived Acetyl-CoA, which fuels central biochemical reactions such as the synthesis of fatty acids, cholesterol and acetylcholine, and the acetylation of proteins and histones. We had previously reported that, although loss of Drosophila ATPCL reduced levels of Acetyl-CoA, unlike its human counterpart, it does not affect global histone acetylation and gene expression, suggesting that its role in histone acetylation is either partially redundant in Drosophila or compensated by alternative pathways. Here, we describe that depletion of DmATPCL affects spindle organization, cytokinesis, and fusome assembly during male meiosis, revealing an unanticipated role for DmATPCL during spermatogenesis. We also show that DmATPCL mutant meiotic phenotype is in part caused by a reduction of fatty acids, but not of triglycerides or cholesterol, indicating that DmATPCL-derived Acetyl-CoA is predominantly devoted to the biosynthesis of fatty acids during spermatogenesis. Collectively, our results unveil for the first time an involvement for DmATPCL in the regulation of meiotic cell division, which is likely conserved in human cells.


Cell Division , Drosophila melanogaster/enzymology , Multienzyme Complexes/metabolism , Oxo-Acid-Lyases/metabolism , Spermatogenesis , Animals , Cell Division/genetics , Male , Multienzyme Complexes/genetics , Oxo-Acid-Lyases/genetics , Spermatogenesis/genetics
18.
FEBS Lett ; 594(1): 126-134, 2020 01.
Article En | MEDLINE | ID: mdl-31330039

The hyperthermophilic archaeon, Sulfolobus, synthesizes lysine via the α-aminoadipate pathway; however, the gene encoding homocitrate synthase, the enzyme responsible for the first and committed step of the pathway, has not yet been identified. In the present study, we identified saci_1304 as the gene encoding a novel type of homocitrate synthase fused with a Regulation of Amino acid Metabolism (RAM) domain at the C terminus in Sulfolobus acidocaldarius. Enzymatic characterization revealed that Sulfolobus homocitrate synthase was inhibited by lysine; however, the mutant enzyme lacking the RAM domain was insensitive to inhibition by lysine. The present results indicated that the RAM domain is responsible for enzyme inhibition.


Archaeal Proteins/metabolism , Oxo-Acid-Lyases/metabolism , Sulfolobus acidocaldarius/enzymology , Archaeal Proteins/chemistry , Archaeal Proteins/genetics , Binding Sites , Lysine/metabolism , Mutation , Oxo-Acid-Lyases/chemistry , Oxo-Acid-Lyases/genetics , Protein Binding
19.
Int J Mol Sci ; 20(24)2019 Dec 04.
Article En | MEDLINE | ID: mdl-31817290

There are three human enzymes with HMG-CoA lyase activity that are able to synthesize ketone bodies in different subcellular compartments. The mitochondrial HMG-CoA lyase was the first to be described, and catalyzes the cleavage of 3-hydroxy-3-methylglutaryl CoA to acetoacetate and acetyl-CoA, the common final step in ketogenesis and leucine catabolism. This protein is mainly expressed in the liver and its function is metabolic, since it produces ketone bodies as energetic fuels when glucose levels are low. Another isoform is encoded by the same gene for the mitochondrial HMG-CoA lyase (HMGCL), but it is located in peroxisomes. The last HMG-CoA lyase to be described is encoded by a different gene, HMGCLL1, and is located in the cytosolic side of the endoplasmic reticulum membrane. Some activity assays and tissue distribution of this enzyme have shown the brain and lung as key tissues for studying its function. Although the roles of the peroxisomal and cytosolic HMG-CoA lyases remain unknown, recent studies highlight the role of ketone bodies in metabolic remodeling, homeostasis, and signaling, providing new insights into the molecular and cellular function of these enzymes.


Cytosol/enzymology , Mitochondria/enzymology , Oxo-Acid-Lyases/metabolism , Peroxisomes/enzymology , Energy Metabolism , Evolution, Molecular , Humans , Isoenzymes/classification , Isoenzymes/genetics , Isoenzymes/metabolism , Ketone Bodies/metabolism , Liver/enzymology , Oxo-Acid-Lyases/classification , Oxo-Acid-Lyases/genetics
20.
Proc Natl Acad Sci U S A ; 116(50): 25287-25292, 2019 12 10.
Article En | MEDLINE | ID: mdl-31767748

Evolution fine-tunes biological pathways to achieve a robust cellular physiology. Two and a half billion years ago, rapidly rising levels of oxygen as a byproduct of blooming cyanobacterial photosynthesis resulted in a redox upshift in microbial energetics. The appearance of higher-redox-potential respiratory quinone, ubiquinone (UQ), is believed to be an adaptive response to this environmental transition. However, the majority of bacterial species are still dependent on the ancient respiratory quinone, naphthoquinone (NQ). Gammaproteobacteria can biosynthesize both of these respiratory quinones, where UQ has been associated with aerobic lifestyle and NQ with anaerobic lifestyle. We engineered an obligate NQ-dependent γ-proteobacterium, Escherichia coli ΔubiC, and performed adaptive laboratory evolution to understand the selection against the use of NQ in an oxic environment and also the adaptation required to support the NQ-driven aerobic electron transport chain. A comparative systems-level analysis of pre- and postevolved NQ-dependent strains revealed a clear shift from fermentative to oxidative metabolism enabled by higher periplasmic superoxide defense. This metabolic shift was driven by the concerted activity of 3 transcriptional regulators (PdhR, RpoS, and Fur). Analysis of these findings using a genome-scale model suggested that resource allocation to reactive oxygen species (ROS) mitigation results in lower growth rates. These results provide a direct elucidation of a resource allocation tradeoff between growth rate and ROS mitigation costs associated with NQ usage under oxygen-replete condition.


Escherichia coli/growth & development , Escherichia coli/metabolism , Naphthoquinones/metabolism , Oxidative Stress , Oxygen/metabolism , Aerobiosis , Biological Evolution , Electron Transport , Escherichia coli/genetics , Oxo-Acid-Lyases/genetics , Oxo-Acid-Lyases/metabolism , Reactive Oxygen Species/metabolism
...